TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Safety warnings</td>
<td>4</td>
</tr>
<tr>
<td>Model Types</td>
<td>5</td>
</tr>
<tr>
<td>Bow Thruster Models</td>
<td>5</td>
</tr>
<tr>
<td>Stern Thruster Models</td>
<td>5</td>
</tr>
<tr>
<td>Parts and Tools</td>
<td>6</td>
</tr>
<tr>
<td>Bow Thruster Parts</td>
<td>6</td>
</tr>
<tr>
<td>Stern Thruster Parts</td>
<td>9</td>
</tr>
<tr>
<td>Common Parts</td>
<td>10</td>
</tr>
<tr>
<td>Required Tools and Unsupplied Materials</td>
<td>13</td>
</tr>
<tr>
<td>Electrical Components</td>
<td>14</td>
</tr>
<tr>
<td>Battery Requirements</td>
<td>14</td>
</tr>
<tr>
<td>Battery Capacity and Age</td>
<td>14</td>
</tr>
<tr>
<td>Battery Storage</td>
<td>15</td>
</tr>
<tr>
<td>Connecting Batteries in Parallel to Boost CCA</td>
<td>15</td>
</tr>
<tr>
<td>24 Volt Batteries</td>
<td>16</td>
</tr>
<tr>
<td>Preparing Shunt Cables</td>
<td>17</td>
</tr>
<tr>
<td>Use of Existing Batteries</td>
<td>18</td>
</tr>
<tr>
<td>Cable and Terminal Requirements</td>
<td>18</td>
</tr>
<tr>
<td>Installation Overview</td>
<td>20</td>
</tr>
<tr>
<td>Installation Instructions – Bow</td>
<td>21</td>
</tr>
<tr>
<td>Bow Thruster Placement</td>
<td>21</td>
</tr>
<tr>
<td>Step-By-Step Instructions</td>
<td>22</td>
</tr>
<tr>
<td>Installation Instructions – Stern</td>
<td>31</td>
</tr>
<tr>
<td>Stern Placement</td>
<td>31</td>
</tr>
<tr>
<td>Propeller Depth</td>
<td>31</td>
</tr>
<tr>
<td>Stern Placement Examples</td>
<td>32</td>
</tr>
<tr>
<td>Step-By-Step Instructions</td>
<td>35</td>
</tr>
<tr>
<td>Installation Instructions – Electrical</td>
<td>40</td>
</tr>
<tr>
<td>How To Install Compression Terminals</td>
<td>43</td>
</tr>
<tr>
<td>Schematics</td>
<td>44</td>
</tr>
<tr>
<td>SS230 Series Thrusters (12 Volt) Schematic</td>
<td>44</td>
</tr>
<tr>
<td>340 Series Thrusters (12 Volt) Schematic</td>
<td>45</td>
</tr>
<tr>
<td>350 Series Thrusters (24 Volt) Schematic</td>
<td>46</td>
</tr>
</tbody>
</table>
Installation Instructions –

Wireless Joystick and Remote.. 47
 Reset Receiver Pairings..

Maintenance .. 52
 Motor Unit .. 52
 Air Line ... 52
 Anodes .. 52
 Antifouling Paint .. 52
 Battery .. 53
 Replacement Parts ... 54
 Anode Kit Part Numbers ... 54
 Motors ... 54
 Propeller Kit ... 55
 Joysticks and Key Fob ... 55

Warranty ... 56

Specifications .. 57
 Bow Thrusters ... 57
 Stern Thrusters .. 57
 Wireless Receiver .. 57
INTRODUCTION

Thank you for your purchase of a Sideshift thruster system.

Sideshift thrusters are designed for easy installation by anyone with basic mechanical and electrical skills.

This manual explains everything you need to know about installing your Sideshift thruster.

We also provide unlimited telephone support at 1.877.325.4787.

Also see our website for helpful installation videos at sideshift.com/choose-sideshift/videos/videos/.

This manual explains the different types of thrusters, the parts, tools and procedures required to install them, the electrical system that supplies power to the thruster motors, as well as maintenance and troubleshooting procedures.

We recommend that you familiarize yourself with the entire manual before starting your installation.
Safety warnings

WARNING: Ensure thruster battery switch and main ignition are turned off when conducting maintenance and repair of the thruster.

WARNING: Use extreme caution when swimmers are in the area of the thruster. Turn off ignition and avoid contact with thruster props when boat is stationary.

WARNING: To prevent overheating when operating the Sideshift thruster, run for a maximum of 30 seconds at a time, then allow to cool for at least 10 seconds before further operation.

WARNING: When operating out-of-water do not run thruster for longer than 5 seconds to prevent overheating.

WARNING: If conducting an in-water installation, use a cordless drill only, as a corded drill can present an electrocution hazard.
MODEL TYPES

There are two basic types of Sideshift thruster systems covered in this manual: fixed-mount bow thrusters and fixed-mount stern thrusters.

Electrical connections and controls for both types are similar, however placement and mechanical attachment details vary between the two types of thrusters.

Our SS/ST series thrusters do not retract or deploy. They are permanently fixed to the boat and rise out of the water when the boat planes, creating no drag. They also work well on displacement type hulls and will create no noticeable drag, nor will they affect handling.

Bow Thruster Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Suitable Boat Length</th>
<th>V DC</th>
<th>Current</th>
<th>HP</th>
<th>No. Props</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS230</td>
<td>20-35 ft. (6.1 – 10.7 m)</td>
<td>12</td>
<td>300 A</td>
<td>2.5 HP</td>
<td>Single prop</td>
</tr>
<tr>
<td>SS340</td>
<td>30-45 ft. (9.1 – 13.7 m)</td>
<td>12</td>
<td>550 A</td>
<td>5.0 HP</td>
<td>Dual prop</td>
</tr>
<tr>
<td>SS350</td>
<td>40-60 ft. (12 – 18.3 m)</td>
<td>24</td>
<td>400 A</td>
<td>7.5 HP</td>
<td>Dual Prop</td>
</tr>
</tbody>
</table>

Stern Thruster Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Suitable Boat Length</th>
<th>V DC</th>
<th>Current</th>
<th>HP</th>
<th>No. Props</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST340</td>
<td>20-45 ft. (6.1 – 13.7 m)</td>
<td>12</td>
<td>550 A</td>
<td>5.0 HP</td>
<td>Dual Prop</td>
</tr>
<tr>
<td>ST350</td>
<td>40-60 ft. (12.2 – 18.3 m)</td>
<td>24</td>
<td>400 A</td>
<td>7.5 HP</td>
<td>Dual Prop</td>
</tr>
</tbody>
</table>
PARTS AND TOOLS

Bow Thruster Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Photo</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper section and top cap</td>
<td></td>
<td>Secures thruster base to hull. Covers and protects through-hull connections</td>
</tr>
<tr>
<td>Bow thruster base with motor</td>
<td></td>
<td>Propeller and motor</td>
</tr>
<tr>
<td>Clamp Strap</td>
<td></td>
<td>Secures thruster base to hull.</td>
</tr>
<tr>
<td>Component</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Center Bolt</td>
<td>Attaches clamp strap to thruster</td>
<td></td>
</tr>
<tr>
<td>Lock Nut (1)</td>
<td>Locks center bolt in place</td>
<td></td>
</tr>
<tr>
<td>Threaded hull insert and bolts (2)</td>
<td>Secures clamp strap assembly to hull.</td>
<td></td>
</tr>
<tr>
<td>Hull insert epoxy kit</td>
<td>Cements threaded hull inserts in place</td>
<td></td>
</tr>
<tr>
<td>Top through bolt assembly</td>
<td>Secures top of upper section</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Side screws (2)</th>
<th>Secures upper section cowling</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Side screws (2)]</td>
<td></td>
</tr>
</tbody>
</table>

Stern Thruster Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Photo</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stern thruster base with motor</td>
<td></td>
<td>Propeller and motor</td>
</tr>
<tr>
<td>Transom Mounting Bracket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swim Platform Mounting Bracket</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Photo</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joystick (single)</td>
<td>![Joystick (single) Photo]</td>
<td>Control bow or stern thruster.</td>
</tr>
<tr>
<td>Joystick (Dual)</td>
<td>![Joystick (Dual) Photo]</td>
<td>Dual control for bow and stern thruster.</td>
</tr>
<tr>
<td>Motor Control Module</td>
<td>![Motor Control Module Photo]</td>
<td>Relays commands from joystick, delivering high current from battery to motor.</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Anti-seize</td>
<td>Prevents screw and bolt threads from seizing, facilitating easier assembly and disassembly.</td>
<td></td>
</tr>
<tr>
<td>Heat shrink tubes</td>
<td>Provides waterproofing for cable at battery terminals.</td>
<td></td>
</tr>
<tr>
<td>Heat shrink tubes (sufficient for all cables attached to motor controller. Cut to size)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal protectors</td>
<td>Protects terminals from moisture and prevents shorts.</td>
<td></td>
</tr>
<tr>
<td>Compression terminal pairs: 1&2AWG for thruster to motor controller. 1/0 and 2/0 AWG for battery side of motor controller.</td>
<td>Connects cables to motor controller. Select size according to wire gauge used.</td>
<td></td>
</tr>
<tr>
<td>Part</td>
<td>Image</td>
<td>Purpose</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Wireless Key Fob</td>
<td></td>
<td>Allows wireless remote operation of thrusters. Works with all thruster models.</td>
</tr>
<tr>
<td>Battery Switch</td>
<td></td>
<td>On/Off switch for thruster batteries</td>
</tr>
<tr>
<td>Fuse/Voltage Indicator</td>
<td></td>
<td>Fuse/Digital voltage monitor</td>
</tr>
<tr>
<td>Wireless Receiver</td>
<td></td>
<td>Wireless receiver module for joystick</td>
</tr>
</tbody>
</table>
Required Tools

- Cordless DC drill
- Water-proof angle drill (optional, for in-water installations)
- Heat gun
- 3/8” drive torque wrench
- #2 Phillips screwdriver
- Wire stripper
- Wire crimper
- 7/8” socket
- SAE wrench set 3/8” to 3/4”
- Pliers
- 1 1/2” joist drill bit
- 3/4” 13 mm drill bit
- Drill bits up to 1/2”
- 3/16” hex socket driver
- Caulking gun
- Hacksaw
- 2 1/2” hole saw
ELECTRICAL COMPONENTS

Battery Requirements

The batteries supplying the thruster must be capable of supplying the required CCA (Cold Crank Amps), as outlined in Table 1: Required Battery Characteristics. Insufficient battery capacity will lead to poor thruster performance. The battery must have threaded posts.

<table>
<thead>
<tr>
<th>ST/SS Model</th>
<th>Qty</th>
<th>Voltage</th>
<th>Total CCA (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>1</td>
<td>12</td>
<td>850</td>
</tr>
<tr>
<td>340</td>
<td>2</td>
<td>12 V</td>
<td>1700</td>
</tr>
<tr>
<td>350</td>
<td>2</td>
<td>24 V</td>
<td>850</td>
</tr>
</tbody>
</table>

Table 1: Required Battery Characteristics

Warning: It is essential that the cold cranking ampere (CCA) requirements are met as outlined in the table above.

Ensure batteries are load tested and properly charged at all times to avoid performance problems and thruster motor damage due to low voltage.

Deep discharge batteries must be sized larger than starter batteries to supply an equivalent CCA rating. This is generally more expensive than using starting batteries.

Batteries must be installed as close to the motor controller as possible for optimum performance. If you are installing batteries in a non-ventilated area you will need to use AGM (absorbed glass mat) sealed batteries or sealed combination (starter/deep cycle) batteries. In ventilated areas, you can install flooded starting batteries or unsealed combination (starter/deep cycle) batteries.

BATTERY CAPACITY AND AGE

Under normal circumstances with new and fully charged batteries, you can expect around 50 thruster cycles before the battery must be recharged.

It is advisable to recharge batteries after each use if possible, to extend the life of the battery.

As batteries age and with repeated charge cycles, the battery slowly loses its ability to hold charge. The deeper the discharge before recharging, the shorter the life of
the battery. Over time it will be able to supply fewer thruster cycles before it requires recharging and eventually will lack the capacity to allow proper thruster performance.

Capacity reduces to the point that performance is poor or few thrust cycles are available before recharging, and the batteries must be replaced.

BATTERY STORAGE

Over time, batteries self-discharge, even when disconnected. Some new batteries may have a self-discharge of 1-2% per month, but depending on the type and age of the battery, it can rise to 6% per month or more.

If the battery is coated with moist dirt and corrosion by-products, discharge rates can be even higher. Make sure the battery is clean and free of dirt and corrosion on and around the terminals.

If the battery is a flooded type, top up the electrolyte, ensuring that it is above the plates and below the vent cap well.

Fully charge the battery before storage, and store in a cool, dry place. Cooler batteries will self-discharge at a lower rate than warm batteries.

Check the terminal voltage of the battery periodically. When the terminal voltage drops below 12.4 volts (75% capacity), charge it until fully charged. More frequent charging is preferred if convenient. It is recommended to charge the battery every three months.

Note that as charge capacity decreases, the freezing point of the electrolyte increases. This is important because the electrolyte must not be allowed to freeze. At 62% capacity, the freezing point is -26.5°C/-16°F; at 85% capacity, it is -52°C/-62°F.

CONNECTING BATTERIES IN PARALLEL TO BOOST CCA

You can double the CCA supplied from a single battery by connecting a second battery in parallel to the first. You may prefer this alternative to buying a larger single battery with the required CCA rating.
If you use a parallel configuration, the two batteries must be identical: same rating and same manufacturer and ideally new batteries, or at least operated as a pair for their entire service life. Each battery must be charged separately before installing to ensure they start at the same charge level. Batteries which are dissimilar in any way may not charge and discharge equally, leaving one battery undercharged.

To connect two batteries in parallel, prepare two shunt cables of the same gauge used to connect the batteries to the motor controller. Connect the positive post of one battery to the positive post of the other and the negative post of one battery to the negative post of the other.

One post will share two compression terminals: the shunt and the cable to the motor controller.

24 VOLT BATTERIES

24 volt batteries are less common than 12 volt batteries. You may find it more convenient and less expensive to use two 12V batteries in series. If required, you can use four batteries, with two sets of series-connected batteries in parallel to supply the required CCA.
To connect two batteries in series, connect the negative post of one battery to the positive post of another using a short piece of battery cable of the same gauge used to connect the batteries to the motor controller. The two remaining posts are each connected to the motor controller using two battery cables, supplying 24V.

PREPARING SHUNT CABLES

To prepare a shunt cable:

STEP 1: ARRANGE BATTERIES

You may choose to arrange batteries in different ways: side by side, end to end etc. For a parallel CCA-boasting configuration, arrange the two batteries so the positive and negative posts of each battery are on the same side as the other, as shown in Figure 1.

STEP 2: MEASURE CABLE

Cut cable or cables to length based on the battery arrangement chosen in Step 1 above.

You need one shunt cable for series configuration and two for parallel configuration, as explained in the Connecting Batteries in Parallel to Boost CCA and 24 Volt Batteries sections above.

STEP 3: INSTALL COMPRESSION TERMINALS

Slip shrink tube past both ends of each cable then attach compression terminals, as explained in How To Install Compression Terminals on page 43.

Slip shrink tube over shaft of compression terminal, leaving the ring exposed. Apply heat evenly to the shrink tube until it forms a tight seal around the terminal and cable.
USE OF EXISTING BATTERIES

Existing batteries can be used for the thruster, but this option must be considered with caution. CCA requirements must be met, and you must consider how deeply the batteries will be discharged before charging can occur if the thruster load is added to the original load on the battery.

Deep Discharge Bank

If an existing bank of deep discharge batteries can supply the CCA requirements, this could be an option if they are located close enough to the thruster being powered - See Cable and Terminal Requirements on page 18. A battery at 40% capacity will supply about .8 volts less than a fully charged battery, which will reduce performance of your thruster.

Windlass Batteries

It is possible to share an existing battery bank for a windlass, providing it has sufficient capacity to meet both windlass and thruster usage, and is close enough to the bow to supply the bow thruster. It is not recommended to power the stern thruster from the windlass batteries due to the need for longer cable runs. Supplying both bow and stern thrusters from a single battery is not recommended. The more deeply discharged a battery becomes before it is recharged, the fewer charge cycles it can provide in its lifetime, so if both thruster and windlass are used to a point where battery capacity drops below 75% before recharge, it is probably less expensive to provide a separate battery bank dedicated to the thruster.

The cable gauge, CCA and circuit protection already in place for the windlass must be compatible with the thruster in order for this approach to work. We do not recommend using windlass batteries for our SS350 bow thruster. See table below:

<table>
<thead>
<tr>
<th>Thruster</th>
<th>Cable AWG</th>
<th>CCA</th>
<th>Circuit Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>1/0</td>
<td>850 or greater</td>
<td>300 A peak</td>
</tr>
<tr>
<td>340</td>
<td>2/0</td>
<td>1700 or greater</td>
<td>550 A peak</td>
</tr>
<tr>
<td>350</td>
<td>2/0</td>
<td>850 or greater</td>
<td>400 A peak</td>
</tr>
</tbody>
</table>

Table 2: Shared Battery Requirements

Cable and Terminal Requirements

Due to the high current load drawn by the motors, it is essential that the correct type of cable and connectors are used, and that maximum cable length guidelines are observed according to the gauge and thruster model. These guidelines are summarized in the table below. The table assumes cables from the thruster to the controller have not been shortened.
Cable must be high quality tin coated copper, marine grade cable. Cable ends must be fitted with high grade cast copper, tin coated compression type terminals and sealed with double wall heat shrink tubing for moisture protection.

Cables from the motor are 10 feet and 4 AWG. This lighter gauge of cable is used to allow for easier routing between the motor and controller. It is essential that cable from battery to controller is much heavier gauge or the motor will not perform properly and could be damaged.

NOTE: SAE gauge can have up to 12% less conductor cross-section than AWG. Use cables of equal or greater AWG as suggested below.

<table>
<thead>
<tr>
<th>Thruster</th>
<th>Length – 1/0 AWG</th>
<th>Length – 2/0 AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>30’</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
<td>40’</td>
</tr>
<tr>
<td>350</td>
<td></td>
<td>50’</td>
</tr>
</tbody>
</table>
INSTALLATION OVERVIEW

Thruster installation involves three main phases: thruster, joystick and electrical installation.

There are differences between installing a bow thruster and a stern thruster, although they share many common elements. Instructions for each type of installation are covered separately below.

Electrical installation and joystick installation are similar for bow and stern thrusters. Each is covered in a separate section.

Note that if you are installing both a bow and stern thruster, each thruster must have a separate electrical installation, including batteries, motor controller and joystick receiver. They can share a dual joystick which has two joysticks on a single console, or use two separate single joysticks.
INSTALLATION INSTRUCTIONS
– BOW

Bow thrusters can be installed with the boat in water or on land, although land-based installation is easier.

In order to obtain the strongest possible epoxy bond, installation should be performed when the hull is dry, clean and the epoxy and hull surface temperature is between 70°F/21°C and 75°F/24°C.

Get an overview of the installation procedures by viewing the installation videos online at sideshift.com/choose-sideshift/videos/videos/.

Bow Thruster Placement

The bow thruster is located on the center line, with the top of the propeller at least 5 inches (12 cm) below the shallowest waterline. The cables and air vent pass through the hull above the waterline.

Figure 3: Bow Sideshift thruster placement
Step-By-Step Instructions: Bow Thruster

STEP 1: DETERMINE WATERLINE

The propeller must be at least 5 inches (12 cm) below the shallowest waterline and ideally out of the water when planing, so determining the waterline is a crucial first step to installation.

![Waterline Diagram]

Figure 4: Top of propeller 5" (12 cm) below water line
NOTE: Be sure to determine the waterline with an empty boat to ensure thruster placement will keep the propeller a minimum of 5” (12 cm) below the waterline in the worst case scenario.

The water stain on the hull is a good indication of typical waterline over a range of conditions. Use the lowest indication of waterline if a water mark is visible.

If no water stain is visible, the waterline must be marked while the boat is in the water. With the boat completely unloaded (fuel tanks empty but standard equipment in place), mark the waterline near the bow of the boat with a grease pencil.

STEP 2: POSITION CLAMP STRAP

Dry fit the clamp strap such that the holes at the end of each flange are between 2” and 6” (5 and 15.25 cm) above the waterline. Mark the position on the bow with tape. Duct tape works well.

Verify that drilling the hole locations selected in step a. above will not damage anything on the inside of the boat, for example a water tank or wiring etc. If in doubt, contact the boat manufacturer.

WARNING: Verify that the proposed location to drill the anchor holes and cable holes as determined above will not interfere or damage anything on the inside of the hull.

Remove the two sided-tape backing on clamp strap.
Repurpose the clamp strap at the location marked above and fasten in place using the attached two-sided tape.
STEP 3: DRILL HULL INSERT HOLES

NOTE: A water-proof angle drill may be required to drill the following holes if the boat is in the water.

WARNING: If in-water installation, use a cordless drill for the following procedure. A corded drill presents an electrocution hazard.

WARNING: Epoxy is an irritant. Wear eye protection and use disposable plastic gloves when handling epoxy.

Using a 5/16” or 8 mm drill bit, drill pilot holes through the hull at the center of each hole on either side of the clamp strap.

Remove the clamp strap.

NOTE: If you have access to the inside of the boat you can use the 5/16 bolt with a nut and washers instead of the hull insert at this time before the next step. Be sure to seal the hole with Sikaflex or equivalent sealant.

Using a ½” or 13 mm drill bit, enlarge each pilot hole.

Clear debris from holes to ensure good epoxy adhesion.

STEP 4: INSTALL HULL INSERT
NOTE: Surface must be dry before drilling otherwise epoxy may not form a strong bond between hull and insert.

NOTE: Epoxy will form the strongest bond when the surface of the hull where the inserts are installed is between 21°C/70°F and 24°C and 75°F.

NOTE: Wear disposable latex or plastic gloves for the following procedure.

NOTE: If inside access is available, clamp strap can be held in place with nuts and bolts rather than with the hull inserts.

Make sure hull surface and drilled holes are dry. If not, wipe dry then gently apply heat to surface with heat gun, taking care not to over-heat.

Load epoxy tube into calking gun.

Flush nozzle with epoxy until you get a stream of consistently coloured epoxy. It will start off almost white and become progressively darker blue. When it is a consistent shade of blue, it is ready to apply.

NOTE: Ensure epoxy is mixing properly before applying to hull or insert otherwise it will not set properly.

Perform the following steps on each insert:

Thread insert onto a bolt, providing a convenient handle.

Spread an approximately 1/16” (1.5 mm) thick layer of epoxy on the outer surface of the insert and on the inside of the hole.

Push hull insert into the hole in the hull until the top of the hull insert is flush with the hull.

Remove excess epoxy.

If access is possible, apply additional epoxy to each insert on the inside of the hull.

Allow sufficient time for epoxy to cure before proceeding with mechanical installation(see notes below).
NOTE: Be sure to keep epoxy clear of insert/bolt threads or bolt could become permanently bonded to insert.

NOTE: Epoxy must harden for at least 45 minutes at 25°C/77°F before proceeding with the remaining steps. Less time is required for elevated temperatures and more time for cooler temperatures.

NOTE: Epoxy must cure for at least 24 hours at 25°C/77°F before operating the thruster. Less cure time is expected for elevated temperatures and more time for cooler temperatures.

STEP 5: FASTEN CLAMP STRAP

Apply anti-seize compound (included with thruster kit) to threads of the hull insert bolts.

Apply Sikaflex or equivalent sealant under clamp strap to ensure a sealed joint

Use a 3/16” hex socket driver or hex key to torque the hull insert bolts to 10 foot-pounds, or until firm but not over-tightened.

Adjust the center bolt at the apex of the clamp strap: loosen the jam nut, adjust to center, retighten jam nut.
STEP 6: ATTACH THRUSTER BASE

Arrange wires and air line to either side of the clamp strap bolt.
Pass clamp strap bolt through slot in thruster base.
Install washer and thread nut onto center bolt.
Adjust the depth of the propeller relative to the waterline marked on the boat such that the top of the propeller blades are at least 5” (12 cm) below the waterline.

NOTE: The top of the propeller must be at least 5” (12 cm) below the waterline when boat is at its lightest operating weight.
Figure 5: Propeller at least 5” (13 cm) below waterline

Tighten nut to 10 foot-pounds.

NOTE: Nut has to be tight enough to hold fast but not so tight that cowling is hard to install. Once installed, the thruster should be solidly attached to the boat. If the thruster is loose the nut needs to be tighter.

Using a hack saw, cut off excess threads beyond nut.
Using light taps with a hammer, bevel the rim of the bolt at the end of the bolt. This prevents the nut from working lose during operation.
STEP 7: FEED WIRES AND AIR LINE THROUGH HULL

Temporarily slide the cowling from the top of the thruster frame into place. Mark outline with tape.

Using the tape markings as a guide, drill two ½” (13 mm) holes and one ¼” hole through the bow of the boat within the tape markings. These accommodate the power cables and airline. Remove the cowling.

WARNING: Verify that hole placement will not interfere with or damage anything inside of the hull, and that there is sufficient space so that cables can be accessed after passing through the proposed hole location.

Pass the cables and air line through the hull, one per hole.

Seal holes with Sikaflex or equivalent sealant.
NOTE: The air line prevents pressure buildup on the seals due to temperature changes. Air line must be positioned so that the open end is dry. Tube must not be kinked, crimped or damaged.

STEP 8: INSTALL COWLING

Remove marking tape.
Slide cowling in from the top of the thruster unit.
Push cowling all the way down.
Using the hole at the top of the cowling as a guild, drill a $\frac{3}{8}$” hole through the bow to accommodate the top bolt.
Fasten side screws.
Apply Sikaflex or equivalent sealant to the hole from the outside.
Pass bolt through top hole. Slide washer and nut in from the inside of the boat. Tighten snugly with a wrench. **Note: For installations where top bolt is too long, use supplied spacers to compensate.**
INSTALLATION INSTRUCTIONS
– STERN

Stern thrusters can be installed with the boat in water or on land, although land-based installation is more convenient.

Get an overview of the installation procedures by view the installation videos on-line at sideshift.com/choose-sideshift/videos/videos/.

Stern Placement

There are three guidelines you must follow to successfully mount the stern thruster:

1. The top of the propellers must be a minimum of 5 inches (12 cm) below the waterline.

2. The area across the back of the boat must be clear to allow adequate side to side flow for the thrusters to be effective. For example, a thruster cannot be installed between two outdrive motors, otherwise the water forced to the side by the propellers will be blocked by the motors and side thrust will be negligible.

3. The thruster must not interfere with drive propeller or rudder.

You can install the thruster off-center and anywhere below the waterline providing the propellers are deep enough and not obstructed to the sides.

The thruster can even be attached to the outdrive unit if desired although specific installation instructions for that configuration are not provided here. Contact Sideshift for installation details.

Heavy-duty angle brackets and extensions posts in 5”, 10” and 15” lengths are available from Sideshift to allow installation of the thruster in a variety of scenarios.

PROPELLER DEPTH

The thruster must be installed such that the tips of the propellers are at least five inches (13 cm) below the water surface. Ideally the mounting holes for the thruster should be above the water line, although they can be drilled below the waterline if necessary.
If mounted on the underside of the swim platform, extension pillars can be purchased from Sideshift to attain the necessary depth. Use the following table to guide your pillar length selection:

<table>
<thead>
<tr>
<th>Platform to Waterline Distance</th>
<th>Extension Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3” (7.6 cm)</td>
<td>Not required</td>
</tr>
<tr>
<td>3” – 8” (7.6 – 20 cm)</td>
<td>5”</td>
</tr>
<tr>
<td>9” – 13” (23 – 33 cm)</td>
<td>10”</td>
</tr>
<tr>
<td>14” – 18” (35 – 46 cm)</td>
<td>15”</td>
</tr>
</tbody>
</table>

STERN PLACEMENT EXAMPLES

Sideshift thrusters can be placed close to the hull providing there are no obstacles between the thruster propellers and the side of the boat. In this case, a right-angle bracket (Part# EX1-11) is bolted to the transom, and the Sideshift thruster is bolted to the angle-bracket. For example, the placement illustrated in Figure 6 provides good clearance around the thruster, and is a preferred placement method for most boats with inboard motors.

The green area in the illustrations below is intended to show the ideal location in which to place the thruster and propellers. This green area places the propellers at least 5” below the waterline and ideally no part of the thruster protrudes below the bottom of the hull.

The optional bracket has an 80° angle, providing adequate clearance between the thruster propellers and hull. The bracket has a 7” and a 6” flange. The thruster can be mounted on either flange, as required.

![Figure 6: Angle-bracket mounting, inboard engine](image)
The thruster can also be mounted horizontally, eliminating the need for a bracket. See Figure 7. This has the disadvantage of requiring holes drilled below the waterline but may suit some installations where space is limited.

![Figure 7: Horizontal mounting, inboard engine](image)

The Sideshift thruster can be mounted vertically from the swim platform to clear outdrive motors as shown in Figure 8. Note that the thruster is off-center and that one propeller is at the outer edge of the hull. This is equally effective as a centered thruster, and since the entire thruster is within the green area, it is an acceptable installation.

![Figure 8: Thruster mounted on swim platform to clear outdrive](image)
Care must be taken to ensure thruster propellers are not obstructed to either side of the thruster. An incorrect installation is shown in Figure 9. The thruster must be placed far enough away from the transom to clear the obstruction, as shown in Figure 10.

Figure 9: Incorrect: thruster mounted too close to hull, obstructed by outdrives

Figure 10: Correct mounting: thruster is far enough from hull to clear outdrives
Step-By-Step Instructions: Stern Thruster

STEP 1: DETERMINE WATERLINE

The top of the propeller must be at least 5 inches (12 cm) below the waterline, so determining the actual waterline is a crucial first step to installation.

NOTE: Be sure to determine the shallowest waterline with an empty boat to ensure thruster placement will keep the top of the propeller a minimum of 5” (12 cm) below the waterline in all conditions.

The water stain on the hull is a good indication of waterline over a range of conditions. Use the lowest indication of waterline location if a water mark is visible.

If no water stain is visible, the waterline must be marked while the hull is in the water. With the boat completely unloaded (fuel tanks empty but standard equipment in place), mark the waterline on the transom with a grease pencil.
STEP 2: DETERMINE MOUNTING POSITION

Follow the guidelines in the Stern Placement section on page 310 to determine a mounting position either on the transom or under the swim platform.

If mounting the thruster on the transom, you must consider the mounting hole location to ensure there is no interference on the inside of the hull. You may be able to remount components on the inside of the transom to suit your chosen location or change the mounting location. You can use an extension post if required to help find a suitable mounting position and still keep the top of the propellers 5” (12 cm) below the waterline while avoiding internal obstructions.

![Figure 11: Propeller at least 5” (13 cm) below waterline](image)

STEP 3: DETERMINE CABLE FEED-THROUGH POSITION

Choose a location for the cables and vent tube to pass through the hull that is above the highest waterline and convenient to the thruster. You will need one hole for each cable and one for the vent tube. Choose an entry point on the hull that will not interfere with any objects on the inside of the boat, or consider relocating objects inside the hull.

STEP 4: DRILL HOLES

NOTE: A water-proof angle drill may be required to drill the following holes if the boat is in the water.

WARNING: If in-water installation, use a cordless drill for the following procedure. A corded drill presents an electrocution hazard.

Mark the four mounting holes on the outside of the transom, or on the swim platform, using the backing plate as a template.
Using a 5/16" or 8 mm drill bit, drill pilot holes through the hull at the center of each hole (4 backing plate holes; 2 cable feed-through holes; 1 airline hole).
Using a 3/8” or 10 mm drill bit, enlarge each pilot hole.

STEP 5: ASSEMBLE Stern THRUSTER MOUNTING ASSEMBLY

If extension posts and/or angle brackets are required, bolt them together with stainless steel nuts and bolts.

NOTE: Be sure to use anti-seize compound (supplied with kit) on all nuts so that assembly and future disassembly is easier.

STEP 6: ATTACH THRUSTER BASE

Transom mount

Apply Sikaflex or equivalent sealant in each hole and in an area between the bolt holes on the mounting flange.

Apply Sikaflex or equivalent sealant to the inside of the hull where the backing plate will sit.

Pass mounting bolts through backing plate from the inside of the hull.

Align thruster mounting flange with bolts. Pass each bolt through corresponding flange hole.

Tighten nuts by wrench onto each bolt.
Swim platform mount

STEP 1: PASS MOUNTING BOLTS THROUGH TOP BACKING PLATE ON TOP OF SWIM PLATFORM.

Align thruster mounting flange with bolts. Pass each bolt through corresponding flange hole.

Tighten nuts by wrench onto each bolt.

STEP 2: FEED WIRES AND AIR LINE THROUGH HULL

Pass the cables and air line through the hull, one per hole.

Seal holes with Sikaflex or equivalent sealant.
NOTE: The air line prevents pressure buildup on the seals due to temperature changes. Air line must be positioned so the open end is dry. Tube must not be kinked, crimped or damaged.
 Due to the high current draw by the motors, each thruster must be supplied with a dedicated battery bank.

WARNING: High currents can result in reduced voltage supply to the thruster if improper cable, connectors and/or assembly procedures are used. This can result in poor performance or damage to the thruster motor.

Correct cabling and connection practices are essential to maintaining correct operating voltage. Batteries must be fully charged before use.

In most cases, the cable run from battery to controller is less than 10 feet, in which case 1/0 AWG cable is appropriate. For longer runs, use 2/0 AWG cable. Heavier cable can be used although it provides no performance advantage. If in doubt, increase the cable gauge.

Batteries are usually in a very low part of the boat and subject to moisture or partial submersion and very damp/corrosive conditions, therefore it is important that the connection terminals are properly sealed to the cables using heat shrink tubing (supplied).

Compression terminal sizes match the following applications:

- **1&2 AWG** Thruster cables
- **1/0 AWG** Battery cable (motor controller end), SS230
- **2/0 AWG** Battery cable (motor controller end), all other models

Ideally, the positive cables should be red and the negative cables black.
NOTE: If in doubt of which cable gauge to use, call Sideshift for technical advice.

Instructions:

STEP 1: LOCATE SITE FOR BATTERY SWITCH, FUSE, CONTROLLER AND BATTERIES

Find a location inside the boat for the battery switch, fuse, motor controller and batteries as close to the cable entry point as possible. Keep the total cable run including battery to controller and controller to motor as short as possible. The fuse must be accessible so you can easily check system voltage and change the fuse if necessary.

NOTE: If the total cable run (battery-to-controller plus controller-to-motor) is longer than 15 feet, use 2/0 instead of 1/0 AWG cable between battery and motor controller.

STEP 2: CUT BATTERY CABLE TO LENGTH

If more than one battery is required, batteries must be arranged and connected in series or parallel as required. See Connecting Batteries in Parallel to Boost CCA on page 15 and 24 Volt Batteries on page 15 for more details.

Cut two lengths of marine battery cable of suitable length to reach from batteries to controller. Note that one cable may need to be longer than the other to accommodate the location of the battery terminals.
STEP 3: CONNECT THRUSTER BATTERY BANK TO BATTERY SWITCH, FUSE/VOLTAGE INDICATOR AND MOTOR CONTROLLER

Refer to relevant schematic starting on page 44 for correct connections.

Fit terminal protectors over each battery lead at the controller end.

Choose a compression terminal to match the cable gauge (typically 1/0 AWG for SS230 thrusters and 2/0 for all other models).

Install compression terminals. See How To Install Compression Terminals on page 43 for instructions.

Attach positive cable to the “BATTERY POS” post on the motor controller. Slip battery protector over terminal.

Repeat steps for “BATTERY NEG” cable.

STEP 4: CONNECT BATTERIES

Fit battery protectors and then shrink tube over each battery lead at the battery end.

Install compression terminals. See How To Install Compression Terminals on page 433 for instructions.

Attach positive cable (connected to “BATTERY POS” post on motor controller) to the positive post of the battery. Slip battery protector over terminal.

Repeat steps for “BATTERY NEG” cable.
STEP 5: CONNECT THRUSTER TO MOTOR CONTROLLER

NOTE: Motor power cable polarity is not identified. If thrusters operate in opposite direction from joystick, reverse M1/M2 cable connections on motor controller.

If thruster power cables are too long, cut them to length. Be sure that they are neatly routed, and comfortably reach the motor controller terminals. Leave some slack to make installation easier.

Connect one cable to “MOTOR 1” and the other to “MOTOR 2”.

How To Install Compression Terminals

STEP 1: STRIP 1” (2.5 CM) OF INSULATION FROM EACH END OF CABLES

NOTE: Take care when stripping insulation to avoid damaging conductor. If some strands are removed the compression terminal will not make a good connection possibly resulting in performance reduction, a fire hazard or the cable pulling out of the compression terminal.

STEP 2: CHOose a compression terminal to match the cable gauge

STEP 3: LOOSEN COMPRESSION TERMINAL NUT

STEP 4: PASS EXPOSED CONDUCTOR THROUGH NUT

STEP 5: TIGHTEN NUT WITH WRENCH

You will feel the resistance increase a bit as you tighten the nut, then become stiff, at which point the nut is sufficiently tight. Give the terminal a tug to make sure it is solidly attached to the cable.

STEP 6: INSTALL HEAT SHRINK TUBE

Slide shrink tube up the cable so that it covers the shaft of the terminal and the insulation of the cable.

Apply even heat to the shrink tube until it makes a solid seal around the cable and terminal.
Schematics

SS230 SERIES THRUSTERS (12 VOLT) SCHEMATIC
340 SERIES THRUSTERS (12 VOLT) SCHEMATIC
350 SERIES THRUSTERS (24 VOLT) SCHEMATIC

- Battery Disconnect Switch in ground wire
- Ground Wire For Voltmeter
- Wireless Receiver
- 24.0 Fuse with Voltmeter
- Important +24v only
- Motor Controller
- Wireless Joystick
- Thruster Motor
- 12 Volts only (from helm)
- 12 Volt Starting Battery
- Battery #1
- *Important 12v only
- 12 Volt Starting Battery
- Battery #2
- 10 Amp
- Common Ground
- S1
- M1
- S2
- M2

DOCK LIKE A PRO
INSTALLATION INSTRUCTIONS – WIRELESS JOYSTICK

Sideshift Wireless Joysticks make installation very straightforward. The joystick itself requires a 12V power source taken from the helm. The wireless receiver is installed next to the motor controller.

STEP 1: INSTALL JOYSTICK ON CONSOLE

a. Locate a position on the console of the boat suitable for the joystick. Check under the selected position on the console to ensure a minimum area of at least 4” diameter and a minimum three inches obstruction-free below the area of the joystick equipment.

b. Peel the backing and place the supplied template in the chosen location.

c. Using a 3/16” bit, drill a hole at the center of the template, marked by the cross-hairs.
d. Using a 2.5” hole saw and the pilot hole drilled in Step 3 above, drill a hole at the center of the template.

e. Remove the template.

f. Connect the red and black leads from the joystick power cable to a direct 12v source under the helm.

Note: Do not connect the joystick cable through an accessory or other type of switch.

g. Plug the power cable into the back of the joystick

h. Run a thin bead of marine sealant in the groove around the underside perimeter of the joystick, insert into the 2 ½” cutout and press in place. Use a sharp knife or razor to trim any excess sealant.

STEP 2: CONNECTING WIRELESS RECEIVER (REFER TO SCHEMATICS)

230/340 Series Thrusters

a. Position the wireless receiver in a dry location near the motor control module.

b. Connect the red and black leads from the 4 pin motor control cable to “battery neg” and “battery pos” on the battery.

c. Connect “battery neg” and “battery pos” on the battery to “battery neg” and “battery pos” on the motor control module.

d. Connect the blue and green leads from the 4 pin motor control cable to “switch 1” and “switch 2” on the motor control module.

e. Plug the motor control cable into the wireless receiver module.

350 Series Thrusters

a. Position the wireless receiver in a dry location near the motor control module.

b. Connect the red(Positive) and black(Ground) leads from the 4 pin motor control cable to the “12v Positive” and “Common Ground” terminals on the battery bank.
c. **Caution:** DO NOT connect red and black leads directly to motor control module or damage to wireless receiver module will occur.

d. Connect “24v positive” and “Common Ground” terminals on the battery to “battery neg” and “battery pos” on the motor control module.

e. Connect the green and blue leads from the 4 pin motor control cable to “switch 1” and “switch 2” on the motor control module.

f. Plug the 4 pin motor control cable into the black wireless receiver control module.

NOTE: The joystick and wireless key fob are preprogrammed for operation. No pairing or programming is required.

OPERATING THE THRUSTER

WARNING: Ensure main ignition and thruster battery switch are turned off when conducting maintenance and repair of the thruster.

WARNING: Use extreme caution when swimmers are in the area of the thruster. Turn off ignition and avoid contact with thruster props when boat is stationary.

WARNING: To prevent overheating when operating the Sideshift thruster, run for a maximum of 30 seconds at a time, then allow to cool for at least 10 seconds before further operation.

WARNING: When operating out-of-water do not run thruster for longer than 5 seconds to prevent overheating.

WARNING: If conducting an in-water installation, use a cordless drill only, as a corded drill can present an electrocution hazard.

1. Turn power on to the joystick by holding the power button for 1 second. A beep will sound and the blue joystick light will activate indicating the thruster is ready for use.
2. Use the thruster in short bursts as required. Do not run for more than 20-30 seconds at a time.
3. The joystick will automatically power-off after 5 minutes of non-use.

OPERATING THE WIRELESS REMOTE

1. For operation of the wireless remote the joystick must be powered on.
2. Push the top left or right buttons as required to operate the bow thruster.
3. Push the bottom left or right buttons to operate the stern thruster (if applicable).
4. The wireless remote will automatically power-off after 5 seconds to preserve battery life.
5. A flashing green light indicates low battery. No green light indicates a dead battery.
6. To replace the battery remove the 4 screws, open the case carefully, and insert a new CR2032 coin cell battery.

OPERATION AND FAULT MODES

<table>
<thead>
<tr>
<th>Operation</th>
<th>Action</th>
<th>Features</th>
</tr>
</thead>
</table>
| **Power on thruster** | Press and hold joystick power button for 1 second | • Short beep and solid blue light to confirm power
| | | • Auto power-off after 5 min of non-use |
| **Operate thruster** | Push joystick left or right as required | |
FAILURE MODES

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>Alarm</th>
<th>Action</th>
</tr>
</thead>
</table>
| Thruster motor not operating | Flashing blue light on joystick indicating low thruster battery voltage | • Check thruster battery voltage
• Load test batteries
• Check charging system
• Ensure fully charged batteries (Min 12.4V) |

REMOTE KEY FOB OPERATION

<table>
<thead>
<tr>
<th>Mode</th>
<th>Action</th>
<th>Features</th>
</tr>
</thead>
</table>
| Power on | • Thruster must be powered on before using remote key fob
• Press left or right arrows to operate thruster as required | • Solid green light when power on
• Auto power-off after 5 seconds
• Flashing green – Low Battery
• No light – Dead battery
Replace with CR2032 Coin battery |
MAINTENANCE

Sideshift thrusters are designed for long life, provided proper maintenance procedures are followed.

WARNING: When working near or on the Sideshift thruster, always turn thruster battery switch to “off” position.

Motor Unit

The thruster motor unit is sealed and requires no maintenance. Check for and tighten any loose fasteners periodically.

AIR LINE

Check the condition of the air line regularly. Check line on the outside and inside of the boat to ensure it is not kinked, pinched or damaged in any way that might block it or cause a leak. **Make sure the exposed end of the air line is in a dry location inside the hull.**

ANODES

The sacrificial anodes are designed to slowly corrode, thus protecting the motor housing from corrosion.

Replace the anodes every year. If anodes are not properly maintained, the motor may corrode and damage could occur.

To remove the anodes, use pliers to turn counter-clockwise.

To install new anodes, hand tighten until firm, then give them an extra half turn.

ANTIFOULING PAINT

Whenever the boat hull requires antifouling paint, or if the thruster requires it, repaint the Sideshift thruster motor housing, motor mount and propellors.

We recommend the Interlux brand of InterProtect 2001E primer and Tri-Lux II antifouling paint.
Battery

Ensure batteries are always fully charged. Unlike other battery technologies such as NiCad, batteries should be lightly cycled. Avoid discharging beyond 75% capacity and even less if possible. Allow battery to cool after charging and before use otherwise battery life will be reduced. To verify charge, measure the terminal voltage of the battery with no load, and refer to the chart below to determine the health of your battery:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Specific Gravity</th>
<th>Approximate Charge*</th>
</tr>
</thead>
<tbody>
<tr>
<td>>14.4</td>
<td></td>
<td>Over-charging**</td>
</tr>
<tr>
<td>>13.38</td>
<td></td>
<td>Charging</td>
</tr>
<tr>
<td>12.62</td>
<td>1.265</td>
<td>100%</td>
</tr>
<tr>
<td>12.54</td>
<td>1.251</td>
<td>90%</td>
</tr>
<tr>
<td>12.45</td>
<td>1.236</td>
<td>80%</td>
</tr>
<tr>
<td>12.4</td>
<td>1.225</td>
<td>75% ***</td>
</tr>
<tr>
<td>12.27</td>
<td>1.206</td>
<td>60%</td>
</tr>
<tr>
<td>12.18</td>
<td>1.19</td>
<td>50%</td>
</tr>
<tr>
<td>11.97</td>
<td>1.155</td>
<td>25%</td>
</tr>
<tr>
<td>11.76</td>
<td>1.12</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 3: Terminal voltage vs. battery capacity

Note * It can take 2 hours after charging for the terminal voltage to properly reflect the charge level.

Note ** Over-charging can damage the battery and cause hydrogen gas to form which is an explosion hazard and can lead to serious injury and fire.

Note *** Avoid discharging beyond 75% to avoid premature battery failure.
Replacement Parts

The following replacement parts are available from your dealer or directly from Sideshift (website or phone order). See the Sideshift website for the latest accessories and current prices.

ANODE KIT PART NUMBERS

Sacrificial anodes prevent unit corrosion (anodes corrode instead of motor). The small thread size fits the motor and the large thread size fits the propeller.

One kit fits all models of Sideshift thruster.

<table>
<thead>
<tr>
<th>Sideshift Model</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 series</td>
<td>AK-S-2</td>
</tr>
<tr>
<td>340 series</td>
<td>AK-S-2</td>
</tr>
<tr>
<td>350 series</td>
<td>AK-S-2</td>
</tr>
</tbody>
</table>

Table 4: Thruster vs. anode kit

MOTORS

Replacement motors can be ordered as follows:

<table>
<thead>
<tr>
<th>SS/ST Thruster</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 replacement motor kit</td>
<td>MA230</td>
</tr>
<tr>
<td>340 replacement motor kit</td>
<td>MA340</td>
</tr>
<tr>
<td>350 replacement motor kit</td>
<td>MA350</td>
</tr>
</tbody>
</table>

Table 5: Motor replacement kits

Motors can also be rebuilt. This is practical as long as there is no internal water damage. Contact Sideshift for more information on motor rebuilding services.
PROPELLER KIT
Propeller kits include one single propeller, nut, washer and shear pin. Order part number PROP KIT.

JOYSTICKS AND KEY FOB
Replacement or additional wireless joysticks are available. Wired joysticks have been discontinued. If you have a legacy wired joystick that requires replacement, please contact the factory.
WARRANTY

2 Year Warranty
Register your warranty at https://sideshift.com/register-warranty/

All Sideshift Inc. products are warrantied to be free from defects due to faulty workmanship or defective materials for a period of two years. Products failing within the warranty period should be returned to Sideshift assembled and complete with a copy of the original invoice. Return requests must be emailed, mailed or faxed to Sideshift. The request should include an itemized list of material, stating the reason for the requested return. Upon approval Sideshift will assign a Return Merchandise Authorization Number which must be placed on the return shipping container. Delivery of returned merchandise will be refused and credit will not be issued without written authorization and shipping instructions from Sideshift.

Sideshift Inc. will not be responsible for accidental damage or expense caused by the following conditions:

- Damage due to improper installation
- Improper wire size or low voltage conditions
- Burn-out due to overloading motor or related damage
- Tampering with or altering the motor before, during or after installation
- Damage due to collision of any kind
- Damage due to entanglement of foreign objects such as fishing line and netting material
- Warranty does not cover paint damage, dents, nicks and normal wear and tear of the product following delivery and installation.
SPECIFICATIONS

Bow Thrusters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SS230</th>
<th>SS340</th>
<th>SS350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (HP)</td>
<td>2.5</td>
<td>5.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>12</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Start Current (A)</td>
<td>300</td>
<td>550</td>
<td>400</td>
</tr>
<tr>
<td>Length (in)</td>
<td>27.5</td>
<td>27.5</td>
<td>27.5</td>
</tr>
<tr>
<td>Propeller (type)</td>
<td>8”</td>
<td>8”</td>
<td>8”</td>
</tr>
<tr>
<td>Recommended boat size (ft.)</td>
<td>20-35</td>
<td>30-45</td>
<td>40-60</td>
</tr>
</tbody>
</table>

Stern Thrusters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ST340</th>
<th>ST350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (HP)</td>
<td>5.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Start Current (A)</td>
<td>550</td>
<td>400</td>
</tr>
<tr>
<td>Length (in)</td>
<td>16.75</td>
<td>16.75</td>
</tr>
<tr>
<td>Propeller</td>
<td>8”</td>
<td>8”</td>
</tr>
<tr>
<td>Recommended boat size (ft.)</td>
<td>20-45</td>
<td>40-60</td>
</tr>
</tbody>
</table>

Wireless Receiver

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>12 VDC</td>
</tr>
</tbody>
</table>

Sideshift Inc.
130 Industrial Ave, Unit 303
Carleton Place, ON, Canada K7C 3T2

Toll free. 1.877.325.4787
Tel. +1.613.686.6011
Fax. +1.613.225.9599
www.sideshift.com